44,895 research outputs found

    SAMplus: adaptive optics at optical wavelengths for SOAR

    Full text link
    Adaptive Optics (AO) is an innovative technique that substantially improves the optical performance of ground-based telescopes. The SOAR Adaptive Module (SAM) is a laser-assisted AO instrument, designed to compensate ground-layer atmospheric turbulence in near-IR and visible wavelengths over a large Field of View. Here we detail our proposal to upgrade SAM, dubbed SAMplus, that is focused on enhancing its performance in visible wavelengths and increasing the instrument reliability. As an illustration, for a seeing of 0.62 arcsec at 500 nm and a typical turbulence profile, current SAM improves the PSF FWHM to 0.40 arcsec, and with the upgrade we expect to deliver images with a FWHM of ≈0.34\approx0.34 arcsec -- up to 0.23 arcsec FWHM PSF under good seeing conditions. Such capabilities will be fully integrated with the latest SAM instruments, putting SOAR in an unique position as observatory facility.Comment: To appear in Proc. SPIE 10703 (Ground-based and Airborne Instrumentation for Astronomy VII; SPIEastro18

    The CORALIE survey for southern extrasolar planets. XVI. Discovery of a planetary system around HD 147018 and of two long period and massive planets orbiting HD 171238 and HD 204313

    Full text link
    We report the detection of a double planetary system around HD 140718 as well as the discovery of two long period and massive planets orbiting HD 171238 and HD 204313. Those discoveries were made with the CORALIE Echelle spectrograph mounted on the 1.2-m Euler Swiss telescope located at La Silla Observatory, Chile. The planetary system orbiting the nearby G9 dwarf HD 147018 is composed of an eccentric inner planet (e=0.47) with twice the mass of Jupiter (2.1 MJup ) and with an orbital period of 44.24 days. The outer planet is even more massive (6.6 MJup) with a slightly eccentric orbit (e=0.13) and a period of 1008 days. The planet orbiting HD 171238 has a minimum mass of 2.6 MJup, a period of 1523 days and an eccentricity of 0.40. It orbits a G8 dwarfs at 2.5 AU. The last planet, HD 204313 b, is a 4.0 MJup -planet with a period of 5.3 years and has a low eccentricity (e = 0.13). It orbits a G5 dwarfs at 3.1 AU. The three parent stars are metal rich, which further strengthened the case that massive planets tend to form around metal rich stars.Comment: 6 pages, 6 figures, accepted for publication in A&

    Analytical study of tunneling times in flat histogram Monte Carlo

    Full text link
    We present a model for the dynamics in energy space of multicanonical simulation methods that lends itself to a rather complete analytic characterization. The dynamics is completely determined by the density of states. In the \pm J 2D spin glass the transitions between the ground state level and the first excited one control the long time dynamics. We are able to calculate the distribution of tunneling times and relate it to the equilibration time of a starting probability distribution. In this model, and possibly in any model in which entering and exiting regions with low density of states are the slowest processes in the simulations, tunneling time can be much larger (by a factor of O(N)) than the equilibration time of the probability distribution. We find that these features also hold for the energy projection of single spin flip dynamics.Comment: 7 pages, 4 figures, published in Europhysics Letters (2005

    Mott-insulator phase of coupled 1D atomic gases in a 2D optical lattice

    Full text link
    We discuss the 2D Mott insulator (MI) state of a 2D array of coupled finite size 1D Bose gases. It is shown that the momentum distribution in the lattice plane is very sensitive to the interaction regime in the 1D tubes. In particular, we find that the disappearance of the interference pattern in time of flight experiments will not be a signature of the MI phase, but a clear consequence of the strongly interacting Tonks-Girardeau regime along the tubes.Comment: 4 pages, 3 figure

    Phase diagram of the penetrable square well-model

    Full text link
    We study a system formed by soft colloidal spheres attracting each other via a square-well potential, using extensive Monte Carlo simulations of various nature. The softness is implemented through a reduction of the infinite part of the repulsive potential to a finite one. For sufficiently low values of the penetrability parameter we find the system to be Ruelle stable with square-well like behavior. For high values of the penetrability the system is thermodynamically unstable and collapses into an isolated blob formed by a few clusters each containing many overlapping particles. For intermediate values of the penetrability the system has a rich phase diagram with a partial lack of thermodynamic consistency.Comment: 6 pages and 5 figure

    Is the effect of birth weight on early breast cancer mediated through childhood growth?

    Get PDF
    • …
    corecore